20172018 Academic Year Colloquium Schedule 

September 7, 2017
Title: 
Ergodic Theory and Normal Numbers.

Speaker:  Drew D. Ash
Adjunct Assistant Professor
Mathematics and Computer Science
Albion College
Albion, Michigan

Abstract: 
The purpose of this talk is to expose the audience to subfield of dynamical system called ergodic theory. To do so, we will consider the following question. How many numbers in $[0,1)$ are there when we look at their base10 decimal expansion have the following property: The asymptotic (or expected) frequency of seeing the digit $d$, $d\in\{0,1,\dots,9\}$, is $1/10$? Can you even think of a number that has this property? We will show, using ergodic theory, that a surprising amount of numbers have this property! If time allows, we will discuss another interesting transformation called the Gauss map. The Gauss map has connections with continued fractions!

Location: 
Palenske 227

Time: 
3:30 PM

Citation  Click for BibTeX citation 
September 14, 2017
Title: 
Planning for Graduate Study in Mathematics and Computer Science

Speaker:  David A. Reimann
Professor
Mathematics and Computer Science
Albion College
Albion, Michigan

Abstract: 
A degree in mathematics or computer science is excellent preparation for graduate school in areas such as mathematics, statistics, computer science, engineering, finance, and law. Come learn about graduate school and options you will have to further your education after graduation.

Location: 
Palenske 227

Time: 
3:30

Citation  Click for BibTeX citation 
September 21, 2017
Title: 
How to Become An Extremal Graph Theorist

Speaker:  Lauren Keough
Assistant Professor
Mathematics
Grand Valley State University
Allendale, Michigan

Abstract: 
Graph theory is the study of relationships that come in pairs. There are many such relationships occurring naturally, think of matching medical students to residencies, friendship on social networks, or even pairing animals with the regions in which they live. From these relationships we can draw graphs. For example, for each person on a social network draw a dot, and draw a line segment between two dots if the people are "friends". Graph theory is, broadly, the study of these pictures with these dot lines. So, what could extremal graph theory be? Unfortunately extremal graph theory is not doing graph theory while snowboarding. Think of "extremal" more like you may have in Calculus 1 — perhaps you remember finding "local and absolute extrema." By the end of the talk you'll be able to ask and answer extremal questions and perhaps even know a new card trick.

Location: 
Palenske 227

Time: 
3:30 PM

Citation  Click for BibTeX citation 
September 28, 2017
Title: 
The BlackScholes Merton Equation and Option Pricing

Speaker:  Darren E. Mason
Professor
Mathematics and Computer Science
Albion College
Albion, Michigan

Abstract: 
The BlackScholes option pricing formula is a 1997 Nobel Prize winning result in economics
(& mathematical finance) that provides a framework for rational pricing of a large class of
stock options. In this talk we will discuss the basic idea of an option on an asset as well as
the problem of fair valuation of such a financial object. Then, assuming that the stock price
S_{t} follows a geometric Brownian motion, we will discuss a rough hedging argument that
results in the BlackScholes partial differential equation as a necessary condition for riskfree
portfolio evolution. Using changes of coordinate systems and integrating factors, the BlackScholes partial differential equation will be transformed into the classic heat (or diffusion)
equation, for which a standard integral solution form is known. Finally, we will use this
integral solution to derive the celebrated BlackScholes option pricing formula. Some
limitations of this model will also be discussed.

Location: 
Palenske 227

Time: 
3:30 PM

Citation  Click for BibTeX citation 
October 19, 2017
Title: 
Symmetry: A mathematical approach using group theory and linear algebra

Speaker:  David A. Reimann
Professor
Mathematics and Computer Science
Albion College
Albion, Michigan

Abstract: 
Symmetric patterns are used in many situations to decorate an object with a repeating motif that is translated, rotated, or reflected without changing size. We will see examples of several symmetry types and look at these from the vantage point of group theory. In particular, we will study rosette patterns, frieze patterns, wallpaper patterns, and patterns on the sphere. We will then see how we can create all these pattern types with a unified framework based on the vectors and matrices of linear algebra.

Location: 
Palenske 227

Time: 
3:30 PM

Citation  Click for BibTeX citation 
October 26, 2017
Title: 
Graduate Studies in Survey Methodology and Biostatistics at the University of Michigan

Speaker:  Michael R. Elliott
Professor Biostatistics, Research Professor, Survey Methodology
Biostatistics/Survey Methodology
1415 Washington Heights
University of Michigan
Ann Arbor, Michigan

Abstract: 
I will talk about the opportunities available for graduate study in survey methodology and/or biostatistics at the University of Michigan. Undergraduate majors in mathematics, computer science, biology, economics, political science, or related fields who are considering graduate school are welcome to attend and learn about the exciting opportunities these programs offer. The Program in Survey Methodology degree combines aspects of psychology, sociology, statistics, and information and data science to provide training in topics relevant to the understanding of human populations. Students who graduate from this program can pursue careers in public health, business, public policy, consulting, and academics. Everyone is familiar with political polling, but survey methodologists also help with understanding the spread of disease, the risk of transportation injuries, the lifetime antecedents to a healthy old age, the marketing for new and existing products, among many, many care
er paths. Biostatistics is an equally interesting field; biostatisticians work to unravel genetic basis of human health and disease, design and analyze data from clinical trials for new drugs, and design lifesaving systems to prioritize who gets organ transplants, among many other opportunities. I have appointments in both programs and will compare and contrast the fields and the graduate programs at the University of Michigan.

Location: 
Palenske 227

Time: 
3:30 PM

Citation  Click for BibTeX citation 
November 2, 2017
Title: 
All Parabolas Through Three Noncollinear Points

Speaker:  Michael A. Jones
Associate Editor
Mathematical Reviews
Ann Arbor, MI

Abstract: 
There are an infinite number of parabolas through any three noncollinear points. In this talk, I'll explain how solving a system of three equations and three unknowns and applying rotation matrices can be used to find the parabolas. The parabolas form a one parameter family. Geometric intuition about when a parabola doesn't exist for three specific values of the parameter is verified by recognizing when the equation for the parabola is undefined. Looking at the family from a calculus perspective, one can find the parabola with the widest mouth through the three points. We will use Desmos online software to visualize all the parabolas for an example.
This talk is based on an article of the same title that is coauthored with Stanley R. Huddy and is forthcoming in the July 2018 issue of The Mathematical Gazette.

Location: 
Palenske 227

Time: 
3:30 PM

Citation  Click for BibTeX citation 
February 1, 2018
Title: 
A Mechanism Design Approach to Allocating Travel Funds

Speaker:  Michael Jones
Associate Editor
Mathematical Reviews/American Mathematical Society
Ann Arbor, MI

Abstract: 
In mathematics and other disciplines, faculty members are required to give professional talks at conferences on their research or teaching. When I was at Montclair State University in New Jersey, the financial requests for travel exceeded the amount the School of Science and Mathematics had budgeted, which meant that only a percentage of travel was covered. Because faculty were exploiting the method used to distribute limited travel funds among the faculty, the associate dean asked me to construct a new method. In this talk, I'll explain the old method to award travel funds and how faculty were misrepresenting their financial needs to get a higher percentage of their travel paid for. Then, I'll explain the new method. The new method views allocating travel funds as a game. The method constructs a game in which it is each of the faculty member's best interest to reveal truthfully their financial needs. Thus, being truthful is a Nash equilibrium of the game. The method
has the added benefit that it encouraged faculty to be conservative in their spending so that they get a higher percentage of their travel paid for. The process of constructing such a game is called mechanism design.

Location: 
Palenske 227

Time: 
3:30 PM

Citation  Click for BibTeX citation 
February 8, 2018
Title: 
Diagonally dominant random matrices: Physical questions, Mathematical challenges

Speaker:  Rajinder Mavi
Postdoctoral Researcher
Institute of Mathematical Physics and Department of Mathematics
Michigan State University
East Lansing, MI

Abstract: 
A remarkable phenomenon in quantum physics is that impurities in solid state materials will inhibit mobile quantities, such as electrons, spin orientations, and even information. The consequences range from the familiar to the remarkable: copper wires with impurities of aluminum or silicon have higher resistivity, inhibiting the wire's conductance, a more surprising effect is that, left to their own devices, strongly disordered materials do not reach their thermodynamic equilibrium! This phenomenon is known as Anderson localization and it is a fundamental part of the theory of solid state physics. In the future, we might find applications for disordered materials exhibiting such behavior playing an important role in the construction of quantum computer microchips.
A simple mathematical model exhibiting a physically relevant approximation to a disordered material is a diagonally dominant random matrix. A diagonally dominant random matrix is a random diagonal matrix perturbed by a symmetric, nonrandom, sparse matrix. In quantum mechanics, one is typically interested in the properties of the eigenbasis, i.e. the eigenvectors and eigenvalues of the matrix. If the system is one dimensional, or if the perturbation is small, the eigenbasis is similar to the unperturbed matrix. That is to say, most of the `mass' of most eigenvectors is at a single entry of the vector. Although this may seem unremarkable, the difficulty is showing this is true for fixed perturbation strength with probability one, regardless of the size of the matrix.
We will also compare eigenbases of diagonally dominant random matrices to to eigenbases of `traditional' random matrices which have i.i.d. random variables at all entries of the matrix. In the later case, the mass of each eigenvector is more or less equally distributed over all entries of the vector. We will then examine an interesting interpolation between diagonally dominant random matrices and traditional random matrices.
Finally, we will discuss some recent results and current questions in the field of diagonally dominant random matrices today.

Location: 
Palenske 227

Time: 
3:30 PM

Citation  Click for BibTeX citation 
February 15, 2018
Title: 
Using Geometry to do Number Theory

Speaker:  Mckenzie West
Visiting Assistant Professor
Math Department
Kalamazoo College
Kalamazoo, MI

Abstract: 
Polynomial equations and their solutions form a cornerstone of mathematics. Solutions with rational coordinates are particularly intriguing; a fantastic surprise is the great difficulty of determining the mere existence of a rational solution to a given equation (let alone the complete set).
We will discuss this problem in two cases, diagonal cubic surfaces,
\[ax^3+by^3+cz^3+d=0,\]
and degree 2 del Pezzo surfaces,
\[ax^4+by^4+cx^2y^2+d=z^2.\]
A surprising and successful modern approach, the BrauerManin obstruction, employs tools from linear algebra, geometry and noncommutative algebra. I will discuss a collection of interesting and motivating examples with simultaneous historical and modern interest, and also explain some of the tools and techniques that form the backbone of my research program.

Location: 
Palenske 227

Time: 
3:30 PM

Citation  Click for BibTeX citation 
February 22, 2018
Title: 
Drawing Graphs on Surfaces

Speaker:  Heather Jordon
Associate Professor of Mathematics
Mathematics & Computer Science
Albion College
Albion, MI

Abstract: 
A graph G consists of two sets, a finite nonempty set V of vertices and a set E of edges, where
each edge is an unordered pair of distinct vertices. When we draw a graph, we want edges to intersect only at vertices, called an embedding of the graph. It turns out that not every graph can be embedded in the plane but every graph can be embedded in 3dimensional space (even with straight line segments for edges). In this talk, we will discuss drawing
graphs on surfaces that are "in between" the plane and 3dimensional space. These surfaces will be compact 2manifolds, and may orientable or nonorientable.

Location: 
Palenske 227

Time: 
3:30 PM

Citation  Click for BibTeX citation 
March 1, 2018
Title: 
Graceful Colorings In Graphs

Speaker:  Alexis Byers
PhD Candidate
Mathematics
Western Michigan University
Kalamazoo, MI

Abstract: 
We describe how a 19th century problem on sets led to a 20th century problem on decompositions of graphs. This, in turn, resulted in a graph labeling problem which gracefully led to a 21st century concept on colorings of graphs.

Location: 
Palenske 227

Time: 
3:30 PM

Citation  Click for BibTeX citation 
