Math 245 - Practice Quiz # 4

Directions: Show **ALL** of your work. Answers that are not supported by calculations, graphs/diagrams, and explanations will **not** be given full credit.

- 1. (4 total points 1 point each) Please circle either T (true) or F (false) for each of the below statements. There is no penalty for guessing. You DO NOT have to show your work to receive full credit.
 - I) T F The chain rule for smooth functions u(x,y), x(t), and y(t) says that z(t) = u(x(t), y(t)) has the derivative

$$\frac{dz}{dt} = u_{xx}x'(t) + 2u_{xy}x'(t)y'(t) + u_{yy}y'(t).$$

- II) T F For any linear function f(x,y), $f_x = f_y = 0$.
- III) T F If f(x,y) is continuous at $(a,b) \in \mathbb{R}^2$, it must also be differentiable at (a,b).
- IV) T F The vector $\mathbf{n} = (2, 4, -1)$ is normal to the surface $z = x^2 + y^2$ at (1, 2, 5).
- 2. (6 points) Let $f(x,y) = \ln(x^2 + y)$. Find the rate of change of f at (1,1) in the direction of the vector $\mathbf{v} = -3\hat{\mathbf{i}} + 4\hat{\mathbf{j}}$.

3. (6 points) Compute $\partial/\partial x$ and $\partial/\partial y$ for both f(x,y) and g(x,y) below:

$$f(x,y) = 3x^2y^5 - \ln(xy^2)$$
 and $g(x,y) = \tan^{-1}\left(\frac{x}{xy+1}\right) + \tan(e^{x-y})$.

4. (4 points) Use the chain rule to compute u_s and u_t if

$$u(x,y) = e^{x^2 - y^2}$$
 with $x(s,t) = \frac{s}{t+1}$ and $y(s,t) = \sec(st)$.