## Math 245 Multivariable Calculus - Practice Problems for Exam # 2

1. Evaluate the following partial derivatives.

A) 
$$\frac{\partial}{\partial x} \left( \sin(xy) + x^y - \ln(x+y) \right)$$

Answer:  $y\cos(xy) + yx^{y-1} - \frac{1}{x+y}$ .

B) 
$$\frac{\partial^2}{\partial y \partial x} \left( \sin(xy) + x^y - \ln(x+y) \right)$$

Answer:  $\cos(xy) - xy\sin(xy) + \left(\frac{y\ln x + 1}{x}\right)x^y + \frac{1}{(x+y)^2}$ 

- 2. Consider the function  $f(x,y) = 2\sin(2x 3y)$ . Find the
  - (a) Find  $\nabla f$ .

Answer:  $\nabla f = (4\cos(2x - 3y), -6\cos(2x - 3y))$ .

(b) Find the rate of change of f at  $(0,\pi)$  in the direction  $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ .

Answer:  $\sqrt{2}$ .

(c) In which direction at the point  $(0, \pi)$  is the rate of change of f zero. Give your answer as a unit vector.

Answer:  $\frac{3\hat{\mathbf{i}}+2\hat{\mathbf{j}}}{\sqrt{13}}$ .

3. Find the equation of the tangent plane to the surface  $z=x^2e^{x-y}$  at (2,2,4).

Answer: 8x - 4y - z = 4.

4. Consider

$$f(x,y) = x^4 + 2y^2 - 4xy.$$

A) Find all critical points of f.

Answer: (-1, -1), (0, 0), (1, 1).

B) Use the second derivative test to analyze your answers to part (A), identifying all maxima, minima, or saddle points.

Answer: (-1, -1) is a local minimum, (0, 0) is a saddle point, and (1, 1) is a local minimum.

5. Consider the function

$$f(x,y) = e^{xy}\sin(x-y).$$

Verify that  $f_{xy} = f_{yx}$ .

6. Determine whether or not the function

$$u(x, y) = \sin x \cosh y + \cos x \sinh y$$

is a solution of Laplace's Equation  $\Delta u = u_{xx} + u_{yy} = 0$ .

Answer: It does.

7. The radius of a right circular cone is increasing at a rate of 7 cm/sec while its height is decreasing at a rate of 20 cm/sec.\* How fast is the volume changing when r = 45cm and h = 100cm? Is the volume increasing or decreasing?

Answer:  $\frac{dV}{dt} = 7500 \,\pi \, \frac{\text{cm}^3}{\text{sec}} \simeq 23,561.9 \, \frac{\text{cm}^3}{\text{sec}}$ .

8. Consider

$$f(x,y) = x^3 + 3xy^2 + 3y^2 - 15x + 2.$$

A) Find all critical points of f.

Answer: 
$$(-1, -2), (-1, 2), (\sqrt{5}, 0), (-\sqrt{5}, 0).$$

B) Use the second derivative test to analyze your answers to part (A), identifying all maxima, minima, or saddle points.

Answer:  $(-1,\pm 2)$  are saddle points,  $(\sqrt{5},0)$  is a minimum and  $(-\sqrt{5},0)$  is a maximum.

$$V = \frac{1}{3}\pi r^2 h.$$

<sup>\*</sup>The volume V of a right circular cone of height h > 0 and radius r > 0 is

9. Find three positive numbers whose sum is 100 and whose product is a maximum.

Answer: x = y = z = 100/3. The maximum product is  $10^6/27$ .

10. Find the rectangular box with the largest surface area in the first octant with three faces in the coordinate planes and one vertex on the plane 2x + 2y + z = 14. Ensure that you fully justify your solution.

Answer: Maximum surface are of 56 with  $x=2,\,y=2,$  and z=6.