Math 312 - Practice Quiz # 3 - Solution

- 1. (1 point each) Please circle either T (true) or F (false) for each of the below statements. Answers are in BOLD.
 - A) T **F** $30000/a_{\overline{60}|0.06}$ represents the monthly loan payment amount on a \$30,000 car with a 5-year loan and level monthly payments at a nominal annual rate of 6%, compounded monthly.
 - B) **T** F In an amortized loan, 100% of the interest owed on the outstanding balance must be repaid each period.
 - C) T **F** The retrospective method for finding the outstanding loan balance at time t computes the difference between the future value of the original amount borrowed and the future value of all payments made on the loan.
 - D) T **F** The interest rate of an amortized loan must be constant over the life of the loan.
- 2. (8 total points) You borrow $300,000 \in$ with a 30-year mortgage at a nominal interest rate of $i^{(12)} = 6\%$.
 - A) (4 points) What is the monthly level payment K for this loan?

Solution: K solves

$$300000 = K \cdot a_{\overline{360},005} \quad \Rightarrow \quad K \simeq 1798.65 \in.$$

B) (4 points) You decide to refinance your loan at the end of the 10^{th} year for 15 years at a nominal annual interest rate of 4.5% convertible monthly. What is the new monthly payment?

Solution: 20 year remain on the original loan so the outstanding balance is

 $OB = 1798.651575 \cdot a_{\overline{240}}_{0.005} \simeq 251057.1748 \in$.

Refinancing over 15 years at $i^{(12)} = 4.5\%$ results in the new payment K_{new} which solves

 $K_{\text{new}} a_{\overline{15(12)}|0.045/12} = 251057.1748 \quad \Rightarrow \quad \boxed{K_{\text{new}} \simeq 1920.57 \in .}$

3. (4 points) A company has a loan of 100,000 to be repaid with 30 annual end-of-year level payments. The principal and the interest in the 21st payment are the same. Find the principal repaid in the 10th payment.

A) 1862 B) 1871 C) 1884 D) 1901 E) 1913

Solution: Level payment for this loan are

$$K = \frac{100000}{a_{\overline{30}|j}},$$

where j, the effective annual rate, is not given. However, from Table 3.6 in the book, we also know that for a loan consisting of n level payments K, the interest repaid and principle repaid on the t^{th} payment are respectively

$$I_t = K (1 - \nu^{n-t+1})$$
 and $PR_t = K \nu^{n-t+1}$.

It follows for our case of n = 30 and t = 21 that

$$I_{21} = K \left(1 - \nu^{30-21+1} \right) = K \left(1 - \nu^{10} \right) = PR_{21} = K\nu^{30-21+1} = K\nu^{10}.$$

Thus

$$2\nu^{10} = 1 \quad \Rightarrow \quad \nu = \frac{1}{1+i} = \sqrt[10]{\frac{1}{2}} \quad \Rightarrow \quad i = \sqrt[10]{2} - 1 \simeq 0.07177 = 7.177\%.$$

It follows that the level payment is

$$K = \frac{100000}{a_{\overline{300.07177}}} \simeq 8202.6814.$$

We conclude that principle repaid in the 10^{th} payment is

$$PR_{21} = K\nu^{21} = \frac{8202.6814}{1.07177^{21}} \simeq \boxed{1913.34.}$$

The correct answer is E.

- 4. (4 points) Consider a 30-year home mortgage at a 6.6% nominal annual interest rate compounded monthly, with level end-of-month payments of 766.39. What is the first period in which the principle repaid is over 500?
 - I) 269
 - II) 274
 - III) 278
 - IV) 281
 - V) 284

Solution: Recall that for a loan with n level payments of amount K, the principle repaid in period t is given by $K\nu^{n-t+1}$. Therefore we want to solve

$$766.39\nu^{360-t+1} > 500.$$

It follows that

$$\nu^{361-t} \ge \frac{500}{766.39} \quad \Rightarrow \quad 361-t \le \frac{\ln\left(\frac{500}{766.39}\right)}{\ln\nu}$$

since $\ln \nu < 0$ and $\ln(x)$ is monotonically increasing. Therefore

$$t \ge 361 - \frac{\ln\left(\frac{500}{766.39}\right)}{\ln\nu} \simeq 283.135.$$

Hence, the first time the amount of principle exceeds 500 is payment 284. The correct answer is V.