Directions: Show **ALL** of your work. Answers that are not supported by calculations, graphs/diagrams, and explanations will **not** be given full credit.

- 1. (4 total points 1 point each) Please circle either T (true) or F (false) for each of the below statements. There is no penalty for guessing. You DO NOT have to show your work to receive full credit.
 - I) T F The limits in polar coordinates for $\iint_{\Omega} f \, dA$ where $\Omega = \{(x,y) : 4 \le x^2 + y^2 \le 9\}$ are $0 \le \theta \le 2\pi$ and $4 \le r \le 9$.
 - II) T F If $f(x, y) = x^2 \sin(y^2)$, then

$$\iint_{[-2,2]\times[0,\pi]} f(x,y) \, dA = \int_{-2}^2 x^2 \, dx \cdot \int_0^\pi \sin\left(y^2\right) \, dy.$$

III) T F The differential area element in polar coordinates is $dA = dr d\theta$.

IV) T F Given a smooth function f(x, y) defined on \mathbb{R}^2 , it is always true that

$$\int_0^1 \int_0^x f(x,y) \, dy \, dx = \int_0^1 \int_y^1 f(x,y) \, dx \, dy.$$

2. Evaluate

$$\int_0^1 \int_0^{s^2} \cos\left(s^3\right) \, dt \, ds$$

Answer: $\sin(1)/3$.

3. Evaluate

$$\int_0^1 \int_x^1 e^{\frac{x}{y}} \, dy \, dx.$$

Answer: (e - 1)/2.

4. Evaluate

$$\iint_{\Omega} 1 + y \, dA,$$

where Ω is the semicircular disk $\Omega := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 9 \text{ and } y \ge 0\}.$

Answer: $9(\pi + 4)/2$.