Math 245 - Practice Problems for Quiz # 3 - Solution

1. Please circle either T (true) or F (false) for each of the below statements. There is no penalty
for guessing. Answers are in BOLD.

I) T F The chain rule for smooth functions u(x,y), x(s,t), and y(s,t) says that
z(s,t) = u(x(s,t),y(s,t)) has the second partial derivative
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II) T F hm(x,y)—>(2,1) (Q:E - 3y) =1.

II) T F The domain of In(z? + ?) is R2.

IV) T F The chain rule for smooth functions u(x,y), x(t), and y(¢) says that
z(t) = u(z(t),y(t)) has the derivative
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V) T F For any linear function f(z,y), fo = fy, =0.
VI) T F If f(z,y) is continuous at (a,b) € R?, it must also be differentiable at

(a,b).

2. Compute the below partial derivatives:

8%(lr?y_1n(:::+y)) and (Sin2 (iﬂ»y

Solution: Using the chain rule, we have for the first case
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For the second case find
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3. Let f(z,y) = In (acZ + y). Find the rate of change of f at (1,1) in the direction of the vector
v = —3i+4].

Solution: First note that

which, at (z,y) = (1,1), has the value V f(1,1) = (1, 1/2). The unit vector in the direction of v
is

v = %' = (=3/5)i+ (4/5)].

It follows that

Dof =V f(1,1)-v =(1,1/2) - (—3/5, 4/5) = —
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4. Find the equation of the plane tangent to the surface z = e**¥ at (0,0, 1).

Solution: First note that

=" (z4+y), =" and 2z, =" (z+y), ="

so that at (0,0, 1), the normal vector is

n = (2, 2y, —1)| = (e““‘y, S —1)‘

om0 = 1,1,-1).

z=y=0 - (

It follows that the plane is

1 (z-0)+1-(y—0)—1-(2—1)=0 or |z+y—z=-L1.

5. Find and graph in the z-y plane the domain of

zy
f(z,y) = [

Solution: The numerator xy is well defined and makes sense on all of R2. In addition, the divisor
is 0 when

x2+y27120 = :c2+y2:1.

Therefore, the only points in R? that are excluded from the domain of f are those on the circle
of radius 1 centered at (0,0). Formally, we write

dom(f) = {(z,y) € R* : 2® +y* #1}.

The corresponding graph is the interior of the a circle of radius 1 centered at the origin as well as
the exterior of a circle of radius 1 centered at the origin. That is, all of R? except the unit circle.




. Determine whether or not the limit
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exists. If it does not, prove your conclusion. If it does, demonstrate why and find its value?

Solution: The limit exists and is -1. To see this, use z = rcosf and y = rsinf recall that
(x,y) — (0,0) if and only if » — 0 so that
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. Let f(x,y) = 2%y + y3x. Compute V. Use your answer to find the rate of change of f(z,y) at
(1,1,2) in the direction i—j.

Solution: Since f, = 2xy + y> and fy = x? + 3272, the gradient is

Vf=(fs fy) =|(zy +y°) i+ (z® + 3zy?) j.

At (1,1,2),

Vi) =02+1)i+1+3)j=(34).

The unit vector in the direction of change is
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It follows that the direction derivative of f at (1,1,2) in the direction i — j is

Daf(l 1) = V(1,1 = (3.4)- (o = 23—y = 2

. Compute 9/0zx and 0/dy for both f(z,y) and g(x,y) below:

f(z,y) = 32%° —1n (a:y2) and g(z,y) = tan* <$yj_ 1> + tan (em_y) .

Solution: Using the chain rule we have that
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For g, and g, we use the chain rule and the quotient rule to get
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. Use the chain rule to compute us and u; if

S

="V with t) =
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and y(s,t) = sec(st).

Solution: The chain rules has the form

Us = UpTs + UyYs and Uy = upxy + uylyy.

Since
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with

1
iy T _ﬁ= ys = tsec(st)tan(st), and y = ssec(st)tan(st),
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it follows that

us = (2;36902_92) : <1> + (—2y6x2_yz) - (tsec(st)tan(st)),

t+1
527(t+1)2 sec2(s t)
2se DT ) $2—(t41)? sec® (s 1)
= 5 — 2tsec”(st) tan(st)e (t+1)?
(t+1)

%252“2(“) 2s 5
= le (t+1) ———— — 2tsec’(st)tan(st) | .
(25 (st)tan(s) )




Similarly,
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