Name:

Directions: Show **ALL** of your work. Answers that are not supported by calculations, graphs/diagrams, and explanations will **not** be given full credit.

- 1. (4 total points 1 point each) Please circle either T (true) or F (false) for each of the below statements. There is no penalty for guessing. You DO NOT have to show your work to receive full credit.
 - A) T F The angle between \mathbf{w} and $-\mathbf{w}$ is π .
 - B) T F The set of all points a distance 1 from the z-axis in \mathbb{R}^3 is a sphere.
 - C) T F $\mathbf{u} = \hat{\mathbf{i}} \hat{\mathbf{k}}$ is perpendicular to $\mathbf{v} = 3\hat{\mathbf{j}}$.
 - D) T F There exists $\mathbf{u} \in \mathbb{R}^3$ such that $\mathbf{u} \cdot \mathbf{0} \neq 0$.
- 2. (16 total points) Let $\mathbf{u} = -2\hat{\mathbf{i}} + 3\hat{\mathbf{k}}$ and $\mathbf{v} = 4\hat{\mathbf{i}} 2\hat{\mathbf{j}} 4\hat{\mathbf{k}}$.
 - A) (4 points) Find $2\mathbf{u} + \mathbf{v}$.

B) (6 points) Calculate $|\mathbf{v}|$. Use your answer to find the unit vector $\hat{\mathbf{v}}$ in the direction \mathbf{v} .

C) (6 points) Use your answer to part (B) to find the projection of the vector **u** onto the vector **v**.