Math 245 - Multivariate Calculus - Practice Final Exam #2

- (20 total points 2 points each) Please circle either T (true) or F (false) for each of the below statements. You DO NOT have to show your work to receive credit. If you are not sure, guess!
 - I) T F Given $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3, \mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0.$
 - II) T F For a smooth vector field $\mathbf{F} = \nabla f = P \,\hat{\mathbf{i}} + Q \,\hat{\mathbf{j}}$, it is necessary that $Q_x = P_y$.
 - III) T F $f(x,y) = \sin(x^2 y^2)$ is continuous on \mathbb{R}^2 except at (0,0).
 - IV) T F If a curve $\mathbf{r}(t)$ has $\kappa = 0$, then $\mathbf{r}' || \mathbf{r}''$.
 - V) T F A critical point for a function $f : \Omega \to \mathbb{R}$ is a point **x** where either $\nabla f(\mathbf{x}) = \mathbf{0}$ or $\nabla f(\mathbf{x})$ does not exist.
 - VI) T F If $\Omega \subset \mathbb{R}^2$ is the region inside the unit circle, then

$$\oint_{\partial\Omega} x \, dy = \pi.$$

- VII) T F A cylinder with radius 2 and axis of symmetry aligned with the z-axis can be described by the spherical coordinate equation $\rho \cos \phi = 2$.
- VIII) T F The tangent plane to $z = x^2 + y^2$ at **0** is z = 2x + 2y.
- IX) T F The region bounded by x = 0, y = 1, and y = x is an example of a region that is both Type I and Type II.
- X) T F If $f(x,y) = \phi(x)\psi(y)$, and $\Omega \subset \mathbb{R}^2$ is the region bounded by $y = x^2$, y = 0, and x = 1, then

$$\iint_{\Omega} f(x,y) \, dA = \int_{0}^{1} \int_{0}^{x^2} \phi(x)\psi(y) \, dy \, dx = \int_{0}^{1} \phi(x) \, dx \cdot \int_{0}^{x^2} \psi(y) \, dy$$

- 2. (20 total points) Consider $\mathbf{u} = 2\mathbf{\hat{i}} 3\mathbf{\hat{j}} + 6\mathbf{\hat{k}}$ and $\mathbf{v} = \mathbf{\hat{i}} \mathbf{\hat{j}} + 3\mathbf{\hat{k}}.^*$
 - A) (7 points) Find $2\mathbf{u} + 3\mathbf{v}$.

B) (7 points) Find the unit vector in the direction of ${\bf u}.$

C) (6 points) Find $\mathbf{u} \cdot \mathbf{v}$.

^{*}Answer: A) $7\hat{\mathbf{i}} - 9\hat{\mathbf{j}} + 21\hat{\mathbf{k}}$; B) $\mathbf{u}/7$; C) 23.

3. (20 points) Describe and graph in \mathbb{R}^3 the surface described by the equation[†]

 $x^2 - 6x + y^2 + z^2 - 20z + 9 = 0.$

[†]Hint: Complete the square. Answer: A sphere of radius 10 centered at (3, 0, 10).

- 4. (20 total points) Consider the curve C described parametrically by $\mathbf{r}(t) = 2e^t \,\mathbf{\hat{i}} + e^{2t} \,\mathbf{\hat{j}} + t \,\sin t \,\mathbf{\hat{k}}$, where $0 \le t \le 2.^{\ddagger}$
 - A) (6 points) Find

$$\int_0^2 \mathbf{r}(t) \, dt.$$

B) (7 points) Find the unit tangent vector to C at the point (2, 1, 0).

C) (7 points) Find the equation of the plane normal to C at (2, 1, 0).

[‡]Answer: A) 2 (e² - 1) $\hat{\mathbf{i}} + \frac{1}{2} (e^4 - 1) \hat{\mathbf{j}} + (\sin 2 - 2 \cos 2) \hat{\mathbf{k}}, B) \hat{\mathbf{u}} = \frac{1}{\sqrt{2}} (\hat{\mathbf{i}} + \hat{\mathbf{j}}), C) x + y = 3.$

- 5. (20 points) Evaluate the following limits if they exist. If they do not exist, demonstrate why.
 - A) (10 points)

$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2 + 2y^2}$$

B) (10 points)

$$\lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^2 + y^2}$$

[§]Answer: A) DNE, B) 0.

6. (20 points) Find and classify all extrema of $f(x,y) = x^4 + 2y^2 - 4xy$ on \mathbb{R}^2 .

[¶]*Answer:* Local minima at $(\pm 1, \pm 1)$ and a saddle point at (0, 0.

- 7. (20 total points) Evaluate the following integrals:^{||}
 - A) (10 points)

 $\int_{1}^{2} \int_{0}^{\ln x} x e^{y} \, dy \, dx$

B) (10 points) For the below integral, $\Omega \subset \mathbb{R}^3$ is the region bounded by $x^2 + y^2 = 1$ in the first quadrant and the planes z = 0, z = 2.

$$\iiint_{\Omega} 3x^2yz \, dV$$

 $^{\|}Answer: A| \frac{5}{6}, B| \frac{2}{5}.$

8. (20 points) Denote by C the upper half circle $x^2 + y^2 = 25$, $y \ge 0$, with orientation counterclockwise, starting at (5,0) and ending at (-5,0). Find^{**}

$$\int_{\mathcal{C}} \left(x^2 - 2xy + y^2 \right) \, ds.$$

^{**} Answer: 125π .

9. (20 points) Let C denote the boundary of a square with vertices $(\pm 1, \pm 1)$ in a counterclockwise direction. Evaluate ^{††}

$$\oint_{\mathcal{C}} (x^3 + xy) \ dx + (2y^2 + 2x^2y) \ dy.$$

 $^{^{\}dagger\dagger}Answer: 0.$

- 10. (20 total points) Let $f(x, y) = (x^2 y^2) / 2.^{\ddagger \ddagger}$
 - A) (6 points) Find $\mathbf{F} = \nabla \phi$.

B) (8 points) Graph **F** in \mathbb{R}^2 , showing enough vectors so that the "flow" of the field can be easily observed.

C) (6 points) For C, a smooth path that starts at A = (2, 1) and ends at B = (5, 1), find

$$\oint_A^B \mathbf{F} \cdot \mathbf{dr}.$$

^{‡‡}Answer: A) $\mathbf{F} = x \, \mathbf{\hat{i}} - y \, \mathbf{\hat{j}}$, C) $\frac{21}{2}$.